Beauty of Maths!

  • Thread starter Thread starter mbaig
  • Start date Start date
  • Replies Replies 105
  • Views Views 15K
Beauty of math!

1 * 8 + 1 = 9
12 * 8 + 2 = 98
123 * 8 + 3 = 987
1234 * 8 + 4 = 9876
12345 * 8 + 5 = 98765
123456 * 8 + 6 = 987654
1234567 * 8 + 7 = 9876543
12345678 * 8 + 8 = 98765432
123456789 * 8 + 9 = 987654321​

1 * 9 + 2 = 11
12 * 9 + 3 = 111
123 * 9 + 4 = 1111
1234 * 9 + 5 = 11111
12345 * 9 + 6 = 111111
123456 * 9 + 7 = 1111111
1234567 * 9 + 8 = 11111111
12345678 * 9 + 9 = 111111111
123456789 * 9 + 10=1111111111​

9 * 9 + 7 = 88
98 * 9 + 6 = 888
987 * 9 + 5 = 8888
9876 * 9 + 4 = 88888
98765 * 9 + 3 = 888888
987654 * 9 + 2 = 8888888
9876543 * 9 + 1 = 88888888
98765432 * 9 + 0 = 888888888​

1 * 1 = 1
11 * 11 = 121
111 * 111 = 12321
1111 * 1111 = 1234321
11111 * 11111 = 123454321
111111 * 111111 = 12345654321
1111111 * 1111111 = 1234567654321
11111111 * 11111111 = 123456787654321
111111111 * 111111111 = 12345678987654321​
 
<H2>59. Medieval Mosque Shows Amazing Math Discovery
The never-repeating geometry of quasi crystals, revealed 500 years early

by John Bohannon

The mosques of the medieval Islamic world are artistic wonders and perhaps mathematical wonders as well. A study of patterns in 12th- to 17th-century mosaics suggests that Muslim scholars made a geometric breakthrough 500 years before mathematicians in the West.
Peter J. Lu, a physics graduate student at Harvard University, noticed a striking similarity between certain medieval mosque mosaics and a geometric pattern known as a quasi crystal—an infinite tiling pattern that doesn’t regularly repeat itself and has symmetries not found in normal crystals (see video below). Lu teamed up with physicist Paul Steinhardt of Princeton University to test the similarity: If the patterns repeated when extended infinitely, they couldn’t be true quasi crystals.
Most of the patterns examined failed the test, but one passed: a pattern found in the Darb-i Imam shrine, built in 1453 in Isfahan, Iran. Not only does it never repeat when infinitely extended, its pattern maps onto Penrose tiles—components for making quasi crystals discovered by Oxford University mathematician Roger Penrose in the 1970s—in a way that is consistent with the quasi crystal pattern.
Among the 3,700 tiles Lu and Steinhardt mapped, there are only 11 tiny flaws, tiles placed in the wrong orientation. Lu argues that these are accidents possibly introduced during centuries of repair. “Art historians always suspected there must be something more to these patterns,” says Tom Lentz, director of Harvard University Art Museums, but they were never examined with “this kind of scientific rigor.”
</H2>...
 
Someone make a butterfly or a mushroom or something.

It's like Sudoku, but better.
 
uhh.. i hate maths, but i think its so great what muslims in the past did with maths and how they used it for like... everything. and they invented algebra!!!
 

Similar Threads

Back
Top